Analytic Performance Prediction of Track-to-Track Association with Biased Data in Multi-Sensor Multi-Target Tracking Scenarios
نویسندگان
چکیده
An analytic method for predicting the performance of track-to-track association (TTTA) with biased data in multi-sensor multi-target tracking scenarios is proposed in this paper. The proposed method extends the existing results of the bias-free situation by accounting for the impact of sensor biases. Since little insight of the intrinsic relationship between scenario parameters and the performance of TTTA can be obtained by numerical simulations, the proposed analytic approach is a potential substitute for the costly Monte Carlo simulation method. Analytic expressions are developed for the global nearest neighbor (GNN) association algorithm in terms of correct association probability. The translational biases of sensors are incorporated in the expressions, which provide good insight into how the TTTA performance is affected by sensor biases, as well as other scenario parameters, including the target spatial density, the extraneous track density and the average association uncertainty error. To show the validity of the analytic predictions, we compare them with the simulation results, and the analytic predictions agree reasonably well with the simulations in a large range of normally anticipated scenario parameters.
منابع مشابه
Decentralized and Cooperative Multi-Sensor Multi-Target Tracking With Asynchronous Bearing Measurements
Bearings only tracking is a challenging issue with many applications in military and commercial areas. In distributed multi-sensor multi-target bearings only tracking, sensors are far from each other, but are exchanging data using telecommunication equipment. In addition to the general benefits of distributed systems, this tracking system has another important advantage: if the sensors are suff...
متن کاملSensor Staggering in Multi-Sensor Target Tracking Systems
For a multi-sensor target tracking system in a cluttered environment, the effects of temporally staggered sensors on system performance are investigated and compared with those of synchronous sensors. A probabilistic data association filter (PDAF) is used to track the target. Measurements from local sensors are fused in a centralized manner for the system with synchronous sensors. The system pe...
متن کاملEvaluation of Data Association and Fusion Algorithms for Tracking in the Presence of Measurement Loss
Tracking in multi sensor multi target (MSMT) scenario is a complex problem due to the uncertainties in the origin of observations. Solution to this problem requires appropriate gating and data association procedures to associate measurements with targets. A PC MATLAB program based on track-oriented approach is evaluated which uses nearest neighbor Kalman filter (NNKF) and probabilistic data ass...
متن کاملMulti-Target Tracking with Partially Unresolved Measurements
The problem of limited sensor resolution, although usually ignored in target tracking, occurs in multi-target scenarios whenever the target distance falls below the size of the sensor resolution cell. Typical examples are the surveillance of aircraft in formation, and convoy tracking for ground surveillance. Ignoring the limited sensor resolution in a tracking system may lead to degraded tracki...
متن کاملClutter Removal in Sonar Image Target Tracking Using PHD Filter
In this paper we have presented a new procedure for sonar image target tracking using PHD filter besides K-means algorithm in high density clutter environment. We have presented K-means as data clustering technique in this paper to estimate the location of targets. Sonar images target tracking is a very good sample of high clutter environment. As can be seen, PHD filter because of its special f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2013